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Foreword
Dear reader,

there are a lot of interesting analysis problems sca�ered in the Internet World. Navigating through di�erent sites you may
encounter an exercise that will catch your a�ention and possibly you may want to archive it in your collection so to have
access to it later. �is is the main idea behind this booklet. �e a�empt started back in 2014 when an e�ort to collect as many
exercises as possible began. Basic ideas are being recycled frequently and reappear in many exercises although unrelated at
�rst.

�e booklet contains a collection of interesting problems in Mathematical Analysis. �e problems come from various branches
of mathematics.

� Real and Complex Analysis

� Multivariable Calculus

� General Topology

� Integrals and Series

In each section the reader of this booklet shall encounter exercises that may �nd out there. Many of them are known to you
but still they are interesting. However , there do exist exercises that demand creativity in order to be solved. �e level of
di�culty varies from exercise to exercise and in no way are the problems ordered according to their level of di�culty.

�e author ( Tolaso ) started the collection of the problems using exercises that he encountered in his university classes (
Calculus I, Calculus II and Calculus IV ) and found to be the most interesting and fascinating. He dediced to include non trivial
problems ( as these have nothing to o�er usually and rely mostly on de�nitions ) but challenging ones.

�e version you are now reading is Version 11 which is an improvement of the previous Version 10. I would like to personally
thank all those people who contacted me personally to mention any typographical and / or mathematical errors that were
corrected in this version. A big thanks to all of you guys ! I am open to your e-mails for improvements / suggestions . Feel free
to contact me at the e-mail address that you will �nd at page 2. Last but not least , you are free to use the booklet as an
instructive tutorial to your students. However , be very careful when assigning exercises to them.

Tolaso J Kos

November 27, 2018

Acknowledgements

 Many thanks to all those people ( from all around the world ) who embraced this booklet and have sent remarks and / or
suggestions so that it is improved as well as selecting some of its exercises to assign to their students. I really appreciate
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Real - Complex Analysis

1 For which a ∈ R does the sequence

γn = (1 + a)(1 + 2a2) · · · (1 + nan)

converge? Give a brief explanation.

2 We de�ne a sequence xn as follows

xn+3 =
x2n+2 + 5x2n+1 + x

2
n

xn+2 + 5xn+1 + xn

where x1, x2, x3 > 0. Examine whether the sequence
converges.

3 A sequence of real number {xn}n∈N satis�es the
condition

|xn − xm| >
1

n
whenever n < m

Prove that xn is not bounded.

4 Prove that

lim
n→+∞

(
(n+ 1)(n+2)/(n+1) − n(n+1)/n

)
= 1

5 Prove that

lim
n→+∞n sin(2πen!) = 2π

6 Prove that the limit

` = lim
n→+∞ tann

n

does not exist.

7 Find the value of

` =

√
6 +

√
6 +

√
6 +
√
· · ·

8 Let b·c denote the �oor function. De�ne

an =
√
n−

⌊√
n
⌋

(a) Prove that the limit points of an is the set [0, 1].
(b) Prove that lim supan = 1.

9 Let {xn}∞n=1 ⊂ R and {yn}
∞
n=1 ⊂ (0,+∞). Suppose

that {xn/yn}∞n=1 is monotone. Prove that the sequence
{zn}n∈N de�ned as

zn =
x1 + x2 + · · ·+ xn
y1 + y2 + · · ·+ yn

is also monotone.

10 Evaluate the limit

` = lim
n→+∞ n+ n2 + n3 + · · ·+ nn

1n + 2n + 3n + · · ·+ nn

11 Let {xn}n∈N be a sequence de�ned as

xn = sin 1 + sin 3 + sin 5 + · · ·+ sin(2n− 1)

Find the supremum as well as the in�mum of the
sequence xn.

12 Let α ∈ R such that α/π /∈ Q. Prove that the sequence

ωn = sin(sinα) + sin(sin(2α)) + · · ·+ sin(sin(nα))

is bounded.

13 Let {an}n∈N be a sequence of real numbers that is
de�ned recursively as

an+1 =
√
anan−1 n > 2

and a2 > a1 > 0.

(a) Prove that an converges.
(b) Prove that lim

n→+∞an = 3
√
a22a1.

(c) Let Dn be a closed interval with endpoints the
terms a2n ,a2n−1 of the sequence. Find the
intersection of the intervals Dn , n ∈ N.

14 Let 0 < a < b be real numbers. De�ne a sequence xn
as follows x1 = a , x2 = b and

x2n+1 =
√
x2nx2n−1, x2n+2 =

x2n + x2n−1

2

Prove that the sequence converges and �nd its limit. 

�e limit of the sequence is

` =
2
√
x2
√
x2 − x1

2 log (
√
x2 +

√
x2 − x1) − log x1

5
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15 For a sequence A = (a0,a1,a2, . . . ) of reals , let
SA = (a0,a0 + a1,a0 + a1 + a2, . . . ) be the sequence
of its partial sums a0 + a1 + a2 + . . . . Can one �nd a
non-zero sequence A for which the sequences
A,SA,SSA,SSSA, . . . are all convergent?

16 Let Fn denote the n-th Fermat number 22
n
+ 1.

Evaluate the limit

` = lim
n→+∞

√√√√
6F1 +

√
6F2 +

√
6F3 +

√
· · ·+

√
6Fn



17 Let Hn denote the n - th harmonic number. De�ne the
sequence an as follows

an = nHn lcm(1,2,...,n)

where lcm(, ·, ) is the least common multiple.

(a) Prove that logan ∼ en log2 n. 

(b) Prove that all the terms of the sequence are
integers.

18 De�ne a sequence an as follows

a1 =
1

2
, an+1 =

1 + a2n
2



(a) Use induction to prove that 1
2 6 an < an+1 < 1.

(b) Prove that the sequence converges and �nd its
limit.

(c) Prove that for n > 9 it holds that∣∣∣∣an −
n

n+ 1

∣∣∣∣ > ∣∣∣∣an −
n− 1

n+ 1

∣∣∣∣
19 De�ne

fn(x) =
xn

n!
, x ∈ R , n ∈ N

Examine the pointwise convergence as well as the
uniform convergence of fn.

` = 13
2

In fact this is equivelant to proving lcm(1, 2, . . . ,n) ∼ en.
�is is called quadratic map. For more information check at

h�p://mathworld.wolfram.com/�adraticMap.html

20 Given the sequence of functions

fn(x) = cosn x, 0 6 x 6 π

Prove that

(a) lim fn(x) = 0 but fn(π) does not converge.
(b) Prove that fn converges pointwise but not

uniformly on [0,π/2].

21 Let f : [0, 1]→ [0, 1] be a continuous function. We
de�ne

xn+1 = f(xn) , x0 ∈ [0, 1]

where x0 is picked arbitrary. If xn+1 − xn → 0 , then
prove that xn converges.

22 Let {an}n∈N be a real valued sequence such that the

series
∞∑
n=1

a2n converges. Prove that the series
∞∑
n=1

an
n

also converges.

23 Let {an}n∈N be a positive real valued sequence. If the

series
∞∑
n=1

an converges prove that the series
∞∑
n=1

a
n/(n+1)
n also converges.

24 Let un be a sequence such that∣∣∣∣un+1

un

∣∣∣∣ = 1 +
A

n
+ O

(
1

n2

)
where A does not depend on n and A < −1. Prove that
the seies

∞∑
n=1

un converges absolutely.

25 Let α ∈ R \ Z and let us denote with b·c the �oor
function. Prove that the series

S =

∞∑
n=1

(
α−
bnαc
n

)
diverges.

(16th Cuban Mathematical Olympiad)

26 Let an be a positive and strictly decreasing sequence
such that liman = 0. Prove that the series

Typese�ing LATEX Page 6 of 32 Editor: Tolaso J. Kos
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S =

∞∑
n=1

an − an+1

an

diverges. 

27 Let P denote the set of prime numnbers. Discuss the
convergence of the series

S =
∑
p∈P

sinp

p

28 Examine whether the (double) series

∞∑
n=1

∞∑
m=1

sin(sin(nm))

n2 +m2

converges. 

29 Let {Xn}n∈N be a sequence of strictly increasing
positive integers. For each n > 1 letWn be the least
common multiple of the �rst n terms X1,X2, . . . ,Xn.
Prove that , as n→ +∞ , the series

S =
1

W1
+

1

W2
+ · · ·+ 1

Wn

converges.

30 Let {an}n∈N be a strictly increasing sequence of

positive integers. Prove that the series
n∑
i=0

1

[ai,ai+1]

converges. Here [·, ·] denotes the least common
multiple.


Hint: Let x1, . . . , xn ∈ (0, 1). It holds that
n∑
i=1

(1− xi) > 1−

n∏
i=1

xi

It appears that this problem is quite di�cult. It appeared in several fora
including math.stackexchange.com as well as mathematica.gr. In both went
answered till today. In math.stackexchange.com they suggest that the series
converges and its limit is 1

2
.

Hint:
n∑
i=0

1

[ai,ai+1]
=

n∑
i=0

(ai,ai+1)

aiai+1

6
n∑
i=0

ai+1 − ai
aiai+1

=

n∑
i=0

1

ai
−

1

ai+1

31 Let f : (0,+∞)→ R be a positive di�erentiable
function such that its derivative is positive. Prove that

the series
∞∑
n=1

1

f(n)
converges if-f the series

∞∑
n=1

f−1(n)

n2
converges.

32 Let Hn denote the n-th harmonic number. Study the
convergence of the series

S =

∞∑
n=1

αHn

for the di�erent values of α > 0.

33 Let Hn denote the n -th harmonic number. Prove that
the series

S =

∞∑
n=1

(−1)n
n
√

logn!

log (Hn+1)

converges.

34 Let Hn denote the n - th harmonic number. Prove that
the series

∞∑
n=1

(−1)n−1 log(Hn)

eHn

converges.

35 Let Hn denote the n - th harmonic number. Prove that
the series

∞∑
n=1

nHn

(Hn)n

converges.

36 Let {an}n∈N be a positive real valued sequence such

that the series
∞∑
n=1

an converges. Examine the

convergence of the series

S =

∞∑
n=1

(
1 −

sinan
an

)
=

1

a0

−
1

an
<

1

a0

Typese�ing LATEX Page 7 of 32 Editor: Tolaso J. Kos
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37 Let {xn}n∈N be a real valued sequence of positive terms

such that
∞∑
n=1

xn converges. Set

sn =
1

x1
+

1

x2
+ · · ·+ 1

xn

Prove that the series
∞∑
n=1

n2

xns2n
converges.

38 Let α ∈ R. For which values of α does the series

S =

∞∑
n=1

(
π

2
− arcsin

n

n+ 4

)α
converge?

39 Examine the convergence of the series

S =

∞∑
n=1

sin(sinn)

n

Does it converge absolutely? Justify your answer.

40 Let an be a sequence of positive terms and suppose that∞∑
n=1

an converges.

(a) Prove that the series
∞∑
n=1

n∑n
k=1 ak

also

converges.
(b) Find the smallest possible value of λ such that

∞∑
n=1

n∑n
k=1 ak

6 λ
∞∑
n=1

1

an

41 Prove that the series

Sα =

∞∑
n=1

(−1)n−1

nα
sin(logn)

converges if and only if α > 0.

42 For what values of x ∈ R do the series

(i) S1 =
∞∑
n=1

cos(2nx) (ii) S2 =
∞∑
n=1

sin(2nx)

converge?

43 De�ne xn recursively as:

x1 = 1 , xn+1 = sin xn

(a) Prove that xn ∼

√
3
n .

(b) Prove that xn converges to 0 monotonically
decreasing.

(c) What inequality should β satisfy in order the
series

S =

∞∑
n=1

xβn

to converge?

44 Let an ∼ Bern
(
1
2

)
i.e. each an is 0 or 1 with

probability 1
2 . Prove that the series

S =

∞∑
n=1

an

n

is almost everywhere divergent.

45 What can you say about the uniform convergence of
the series

S =

∞∑
n=1

(−1)n+1

n
sin(nπx) , x ∈ R



46 Let x ∈ R. Consider the series

S =

∞∑
n=2

sinnx

logn
(1)

(A) (a) Prove that S converges forall x ∈ R.
(b) Prove that (1) is not a Fourier series of a

Lebesgue integrable function.
(B) Examine if the function de�ned at (1) is

continuous. Give a brief explanation to support
your argument. 

(C) Prove that the series
∞∑
n=2

cosnx

logn
is both Riemann

and Lebesgue integrable as well as a Fourier series.
Hint: It holds that

∞∑
n=1

(−1)n−1

n
sinnπx =



πx

2
, 0 6 x < 1

0 , x = 1
π (x− 2)

2
, 1 < x 6 2

Do the same question for the quite similar series
∞∑
n=2

sinnx

n logn
.

Typese�ing LATEX Page 8 of 32 Editor: Tolaso J. Kos
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47 Let a ∈ Z. De�ne the function

f(x) = sinax, x ∈ (0,π)

Prove that f can be expanded into a Fourier cosine
series and that it holds

sinax ∼


4a

π

∞∑
n=0

cos(2n+ 1)x

a2 − (2n+ 1)2
, a even

4a

π

[
1

2a2
+

∞∑
n=1

cos 2nx

a2 − 4n2

]
, a odd

48 Let A ⊆ R be a set of �nite measure.

(a) Find the Fourier series of | sin λx|.
(b) Evaluate the limit

` = lim
λ→+∞

ˆ

A

| sin λx|dx

49 Let f : [−π,π]→ R be de�ned as f(x) = |x|.

(a) Expand f in a Fourier series.
(b) Prove that

(i)
∞∑
n=1

1

n2
=
π2

6

(ii)
∞∑
n=1

1

(2n− 1)2
=
π2

8

(c) Apply Parseval’s identity to evaluate the series

S =

∞∑
n=1

1

n4

50 Expand the function

f(x) = log (1 − cos x) , x ∈
(

0,
π

2

)
in a Fourier series.

51 Let {an}n∈N be a bounded sequence. Prove that the

sequence of functions de�ned as
∞∑
n=1

an

n2x
converges

absolutely and uniformly on (0,+∞) to a di�erentiable
function.

(�estion from a Real Analysis Exam

University of Ioannina , Greece)

52 Examine if there exists an 1 − 1 function f : N→ N

such that
∞∑
n=1

f(n)

n2
converges.

53 Examine whether the series

S =

∞∑
n=1

sin
[
π
(

2 +
√

3
)n]

converges.

54 Examine whether the series

S =

∞∑
n=1

(
e−

(
1 + 1

n

)n)
converges.

55 Let {an}n∈N be a real valued sequence such that the

series
∞∑
n=1

an

n
converges. Prove that

lim
n→+∞ a1 + a2 + · · ·+ ann

= 0

56 Given the sequence of fn : R→ R where n ∈ N
de�ned as

fn(x) =

∞∑
n=1

n

n3 + x2

prove that

(a) the serieses
∞∑
n=1

fn and
∞∑
n=1

f ′n converge

uniformly to functions f,g : R→ R.
(b) the functions f,g are continuous.
(c) f ′ = g.
(d) it holds that

(i)
ˆ 1

−1
f(x) dx = 2

∞∑
n=1

1√
n

arctan
1

n
√
n



(ii)
ˆ π
−π
x4g(x) dx = 0.

57 Consider the real valued sequence {yn}n∈N such that
forall real valued sequences {xn}n∈N with lim xn = 0

the series
∞∑
n=1

xnyn converges. Prove that the series
∞∑
n=1

|yn| also converges.

What can you say about the integral
´ ∞
−∞ f(t)dt? Does it converge?

Typese�ing LATEX Page 9 of 32 Editor: Tolaso J. Kos
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58 Let {an}n∈N be a decreasing sequence of positive terms.
Prove that the series

∑
an sinnx converges uniformly

throughout R if and only if nan → 0.

59 Let {an}n∈N be a decreasing sequence of positive terms.

Prove that the series
∞∑
n=1

an cosnx converges

uniformly on R if and only if the series
∞∑
n=1

an

converges.

60 Let Hn denote the n -th Harmonic number. Prove the
inequality

π2

6

(
ζ(3) −

π2

12

)
<

∞∑
n=1

eHn logHn
n3



61 Let f : R→ R be an integrable function. Prove that

S =

∞∑
n=1

1√
n
f
(
x−
√
n
)

converges for almost all x.

62 Prove that the series

S =

∞∑
n=1

cos(log k)

k

diverges by �rst proving that

N∑
n=1

cos logn

n
= sin logN+Reζ(1 + i) + O(N−1)

63 What is the monotony of the function

f(j) =

0∏
i=−j

∞∑
k=0

ik

k!
, j ∈ Z

64 Let f : [−π,π]→ R be a Riemann integrable function.
Prove that

lim
n→+∞

ˆ π
−π
f(x) cosnxdx = lim

n→+∞
ˆ π
−π
f(x) sinnxdx = 0

You might consider ideas from this link.

65 Prove , without using special functions, that the integralˆ π
0

ln x

x+ π
dx converges.

66 Let fn(x) : [0, 1]→ R be a sequence of functions
converging uniformly to a function f. Prove that

lim
n→+∞

ˆ 1

1/n
fn(x) dx =

ˆ 1

0
f(x) dx

67 Let f,g : R→ R be 1 periodic and continuous
functions. Prove that

lim
n→+∞

ˆ 1

0
f(x)g(nx) dx =

ˆ 1

0
f(x) dx

ˆ 1

0
g(x) dx

68 Let f,g : [0, 1]→ R be continuous functions such that
0 < f(x) < cg(x) forall x ∈ (0, 1). for some constant c.
Evaluate the limit:

` = lim
n→+∞

ˆ 1

0
· · ·
ˆ 1

0

f(x1) + · · ·+ f(xn)
g(x1) + · · ·+ g(xn)

d(x1, . . . , xn)

69 Evaluate the limit

` = lim
n→+∞

ˆ 1

0
· · ·
ˆ 1

0

x21 + · · ·+ x2n
x1 + · · ·+ xn

d(x1, . . . , xn)

70 Let f : (0,+∞)→ R such that , forall x > 0 , the limit
lim

n→+∞ f(nx) ∈ R. Examine if the limit lim
x→+∞ f(x)

exists in R if:

(a) f is a continuous function.
(b) f is an arbitrary function.

71 (a) Give an example of a bounded function
f : (0,+∞)→ R such that the limit ` = lim

x→0+
f(x)

does not exist.
(b) If f is a function such as described in (a) then

examine if the following limits exist.

(i) `1 = lim
x→0+

xf(x)

(ii) `2 = lim
x→0+

(1 − x)f(x)

72 Find all polynomials P such that sin P(x) is periodic.
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73 Let f : [a,b]→ R be a continuous function. Prove that

lim
n→+∞

ˆ b
a

f(x)

3 + 2 cosnx
dx =

1√
5

ˆ b
a

f(x) dx

74 Evaluate

` = lim
n→+∞n−n2

[
n−1∏
k=0

(
n+

1

2k

)]n

75 Prove that

min
ai∈R

ˆ 1

0

∣∣xn + a1x
n−1 + · · ·+ an

∣∣ dx =
1

4n

76 Let p,q be two points and γ be a curve passing through
these two points. Prove that

(a) γ ′(t) · u 6 ‖γ ′(t)‖ where u is an arbitrary unit
vector.

(b) that the segment of the curve γ between the
points p and q has length at least equal to the
distance ‖q− p‖ by considering as u = q−p

‖q−p‖ .



77 Let f : R→ R be a di�erentiable function such that
f ′(x) = 0 forall x ∈ Q. Does it necessarily follow that f
is constant throughout R? Explain your answer.

78 Find all functions f : R→ R that preserve convergent
series. (�at is a function preserves convergent series in
the sense mentioned above if

∑
f(an) converges

whenever
∑
an converges.) 

79 Find a function f de�ned on R that is not constant and
in every interval (x1, x2) there exists an a such that

f(a) > max{f(x1), f(x2)}



�e conclusion of this exercise is to show that the line is the shortest
distance between two points.

�e answer to this di�cult question is that the only functions with this
property are of the form f(x) = λx, x ∈ (−δ, δ).

�e function which is equal to 1 everywhere except at 0 on which it is
equal to 0 is such a function. �e non continuous functions of the Cauchy
equation are also such functions and

f(x) =

{
0 if x = 0 or if x is irrational
q if x 6= 0 is rational with x = p/q where q > 0 and gcd(p,q) = 1

80 Examine if there exists a function f : R→ R such that

f(f(x)) = x2 + 1 forall x ∈ R

81 Let f : R→ R be a continuous function such that:

f(x) = f(x+ 1) = f(x+ 2π) , ∀x ∈ R

Prove that f is constant.

82 A function f : R→ R is de�ned as

f(x) = lim
n→+∞ x

2n − 1

x2n + 1

Where is f continuous?

83 Given a continuous function f : R→ R such that forall
x ∈ R \ {0, 1}

ˆ x
0
f(t) dt >

ˆ 1

x

f(t) dt (1)

prove that
´ 1

0
f(t) dt = 0.

84 Let f : [a,b]→ R be a continuously di�erentiable
function such that f(a) = f(b) = 0 and´
b

a
f2(t) dt = 1. Prove that:

(a)
ˆ b
a

xf(x)f ′(x) dx = −
1

2

(b)
ˆ b
a

(
f ′(x)

)2
dx

ˆ b
a

x2f2(x) dx >
1

4

85 Let

f(x) = sin x sin(2x) sin(4x) · · · sin(2nx)

Prove that

|f(x)| 6
2√
3

∣∣∣f(π
3

)∣∣∣
86 Prove that for every x ∈ R the inequality

x2n

(2n)!
+

x2n−1

(2n− 1)!
+ · · ·+ x2

2!
+ x+ 1 > 0

holds.
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87 Prove that for arbitrary real numbers a1,a2, . . . ,an the
following inequality holds.

k∑
m,n=1

aman

m+ n
> 0



88 Let {an}n∈N be a sequence of positive real numbers.
Prove that

lim sup
n→+∞

(
a1 + an+1

an

)n
> e



89 Let C denote the Cantor set. We de�ne the function
χC : [0, 1]→ R as follows:

χC =

{
1 , x ∈ C

0 , elsewhere

(a) Prove that χC is Riemann integrable.

(b) Evaluate
´ 1

0
χC(x) dx.

90 Prove that the function f : Rn \ {0}→ R de�ned as

f (x) =
x

‖x‖a
, a > 0

is a vector �eld but its domain is not star-shaped.

91 Does the ordered �eld of the rational functions satisfy
the axiom of completeness? Explain your answer.

A solution goes along these lines:

k∑
m,n=1

aman

m+ n
=

k∑
m,n=1

ˆ 1

0

amant
m+n−1 dt

=

ˆ 1

0

(
k∑

m,n=1

amant
m+n−1

)
dt

=

ˆ 1

0

(
k∑

m=1

amt
m−1/2

)2

dt

> 0

In fact the above inequality tells us that the matrix
[

1

m+ n

]k
m,n=1

is posi-

tive semide�nite.
�is is a very di�cult exercise. One solution may be found at M. Hata’s

notes. Another solution is to contradict the result andmove along those lines.

92 Let f : [2,+∞)→ R be a uniformly continuous
function. Prove that the integral

J =

ˆ ∞
2

f(x)

x2 log2 x
dx

converges.

93 Let f : [0,+∞)→ R be a continuous and strictly

convex function such that lim
x→+∞ f(x)x = +∞. Prove

that the integral
´ ∞
0

sin f(x) dx converges but not
absolutely.


94 Examine if there exists a continuous function
f : [1,+∞)→ R such that f(x) > 0 forall x ∈ [1,+∞)

such that
´ ∞
1
f(x) dx converges whereas

´ ∞
1
f2(x) dx

diverges.

95 Let f : [a,b]→ R be a Riemann integrable function. If
f(x) = 0 forall rationals of the interval [a,b] then prove
that
´
b

a
f(x) dx = 0.

96 Prove that there exists no rational function such that

f(n) = 1 +
1

2
+ · · ·+ 1

n

forall n ∈ N.

97 Let f : R→ (0,+∞) be a function such that forall
x ∈ R it holds that

f(x) log f(x) = ex (1)

Evaluate the limit

` = lim
x→+∞

(
1 +

log x

f(x)

)f(x)/x
(Romania , 1986)

98 Let n ∈ N and let f : [−1, 1]→ R be a continuous
function such that

ˆ 1

−1
x2nf(x) dx = 0

Prove that f is odd.
I currently have no solution to this , demanding , exercise. It was an

exam’s question.
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99 Let G denote the Catalan constant. Prove that

log
(

1 +
√

2
)
<

ˆ 1

0

tanh x

x
dx < G

100 Evaluate the limit

Ω = lim
n→+∞

n∑
k=1

1
n arctan

(
k
n

)
1 + 2

√
1 + 1

n arctan
(
k
n

)
(Dan Sitaru)

101 Evaluate the limit

Ω = lim
n→+∞

n∑
k=1

arcsin
1√

n2 + k

102 Let ϕ denote Euler’s totient function. Evaluate the limit

` = lim
n→+∞ 1

n2

n∑
k=1

sin

(
πk

n

)
ϕ(k)

103 Let α > 0. Prove that:

lim
n→+∞ 1

logn

∑
16k6na

1

k

(
1 −

1

n

)k
= min{1,a}

104 Let us denote with ζ the Riemann zeta function with
ζ(0) = −1

2 . Let us also denote with ζ(n) the n – th
derivative of zeta. Evaluate the limit

` = lim
n→+∞ ζ

(n)(0)

n!



105 Let ζ denote the Riemann zeta function. Evaluate the
limit

` = lim
n→+∞n

(
ζ(2) −

n∑
k=1

1

k2

)

106 Let ζ denote the Riemann zeta function. Evaluate the
limits:

�e above limit tells us that ζ(n)(0) ∼ −n!.

(a) `1 = lim
n→+∞ ζ(n)

(b) `2 = lim
n→+∞ n

√
ζ(n) − 1

107 Let ζ denote the Riemann zeta function. Evaluate the
limit

` = lim
n→+∞ 1

ζ(n)

n∑
k=1

1

kn



108 Let Hn denote the n - th harmonic number. Prove that

lim
n→+∞n (Hn − logn− γ) =

1

2

109 Let H̃n =

n∑
j=1

(−1)j−1

j
. Prove that the limit

` = lim
n→+∞n

[
H̃n −H2n +Hn

]
does not exist.

110 Let Hn denote the n - th harmonic number. Prove that

lim
n→+∞

(
Hn −

1

2n

n∑
k=1

(
n

k

)
Hk

)
= log 2

111 Evaluate the limit

` = lim
n→+∞ (n!)2

(1 + 12)(1 + 22) · · · (1 + n2)

112 Let Γ denote the Euler’s Gamma function. Prove that

Γ
(

1
10

)
Γ
(

2
15

)
Γ
(

7
15

) =

√
5 + 1

31/1026/5
√
π

113 Let f : [0,+∞)→ R be an integrable and uniformly
continuous function. Prove that lim

x→+∞ f(x) = 0. Does
this result hold if we drop the assumption of the
uniformly continuous ? Explain your answer.

114 De�ne a function f : R→ R such that for every q ∈ Q
must hold f(q) ∈ Q but f ′(q) /∈ Q.

In fact prove that ` = 1.

Typese�ing LATEX Page 13 of 32 Editor: Tolaso J. Kos

http://mathworld.wolfram.com/TotientFunction.html


Mathematical Analysis … … A collection of problems Version 11

115 Let f : [0, 1]→ R be de�ned as:

f(x) =

{
0 , x ∈ [0, 1] ∩ (R \Q)

xn , x = qn ∈ [0, 1] ∩Q

where xn is a sequence such that lim xn = 0 and
0 6 xn 6 1 and qn be an enumeration of the rationals
of the interval [0, 1]. Prove that f is Riemann integrable
and that

´ 1

0
f(x) dx = 0.

116 Let f be holomorphic on the open unit disk D and
suppose that

¨

D

|f(z)|2 d(x,y) < +∞
If the Taylor expansion of f is of the form

∞∑
n=0

anz
n

then prove that the series
∞∑
n=0

|an|
2

n+ 1
converges.

117 Let fn be a sequence of real valued C1 functions on
[0, 1] such that forall n ∈ N the following hold:

� |f ′n(x)| 6
1√
x

(0 < x 6 1)

�
´ 1

0
fn(x) dx = 0

Prove that fn has a convergent subsequence that
converges uniformly on [0, 1].

118 Let χQ denote the characteristic function of the
rationals in [0, 1]. Does there exist a sequence of
continuous functions fn : [0, 1]→ R such that fn
converges to χQ pointwise?

119 Let f : [0, 1]→ R be a continuous function such that

ˆ 1

0
f(t) dt =

ˆ 1

0
tf(t) dt = 1 (1)

Prove that
´ 1

0
f2(t) dt > 4.

120 Let f : [0, 1]→ R be a continuous function such that

ˆ 1

0
f(t) dt =

ˆ 1

0
tf(t) dt (1)

Prove that there exists a c ∈ (0, 1) such that

ˆ c
0
f(t) dt =

c

2

ˆ c
0
f(t) dt

121 Let f : [0, 1]→ R be a continuous function such that

ˆ 1

0
f(t) dt =

ˆ 1

0
tf(t) dt (1)

Prove that there exists a c ∈ (0, 1) such that

cf(c) = 2

ˆ 0

c

f(t) dt

122 Let f : R→ R be a di�erentiable function such that

f ′(x) = f2(x)f(−x) (1)

Find an explicit formula for f.

123 Let f : [0, 1]→ R be a continous function such that´ 1

0
f(t) dt = 1 and

ˆ 1

0
(1 − f(x)) e−f(x) dx 6 0 (1)

Prove that f(x) = 1 forall x ∈ R.

124 Let f : [a,b]→ [0,+∞) be a continous and not
everywhere 0 function. Prove that

lim
n→+∞

´
b

a
fn+1(t) dt´
b

a
fn(t) dt

= sup
x∈[a,b]

f(x)

125 Examine if there exists a continuous function
f : [1,+∞)→ R such that f(x) > 0 forall x ∈ [1,+∞)

and
´ ∞
1
f(t) dt converges whereas

´ ∞
1
f2(t) dt

diverges. 

126 Let x ∈
(
−π2 , π2

)
and consider the function

f(x) = a1 tan x+ a2 tan
x

2
+ · · ·+ an tan

x

n

where a1,a2, . . . ,an ∈ R and n ∈ N. If |f(x)| 6 |tan x|
for all x ∈

(
−π2 , π2

)
then prove that

∣∣∣a1 + a2

2
+ · · ·+ an

n

∣∣∣ 6 1

Do the same exercise with the extra assumption that f is uniformly con-
tinuous.
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127 Let f : [0, 1]→ R be a twice di�erentiable function with
a continuous second derivative. If n is a natural number
greater than 1 such that

n−1∑
k=1

f

(
k

n

)
= −

f(0) + f(1)

2

then prove that

(ˆ 1

0
f(t) dt

)2

6
1

5!n4

ˆ 1

0

(
f ′′(t)

)2
dt

128 Prove that every function f : Q→ Q can be wri�en as
the sum of two 1 − 1 functions g,h : Q→ Q.

129 Give an example of a function f : R→ R such that any
rational number is its period but any irrational is not.
Also, prove that there exists no function g : R→ R
such that any irrational is its period and any rational is
not.

130 Prove that the function

f(x) =

{
sin
(
ln2 x

)
, x > 0

0 , x = 0

has a primite on [0,+∞).

(Constanza , 2009)

131 Let F be an ordered �eld. De�ne f : F→ F such that it
satis�es

|f(x) − f(y)| 6 |x− y|2 , ∀x,y ∈ F

Is F necessarily Archimidean?

132 Compute the limit:

` = lim
n→+∞ 1

n2

∑
16i6j6n

ln

(
3n− i

3n+ i

)
ln

(
3n− j

3n+ j

)

133 Compute the limit

` = lim
n→+∞ 1

n

n∑
k=1

k+ n

n+ 2
√
n2 + n+ k

134 Evaluate the sum

Sn =

n∑
k=1

∑
16i1<···<ik6n

2k

(i1 + 1) (i2 + 1) · · · (ik + 1)

135 Compute the limit

` = lim
n→+∞

 n∑
i=1

n∑
j=1

1

i2 + j2
−
π logn

2


136 Let ζ denote the Riemann zeta function. Prove that

lim
T→+∞ 1

2T

T̂

−T

ζ(32 + it)

ζ(32 − it)
dt =

1

ζ(3)

137 Let b·c denote the �oor function. Prove that forall
n ∈ N it holds that( ∞∑

k=n

1

k3

)−1
 = 2n(n− 1)

138 Let Γ denote the Euler’s Gamma function. Prove that

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s , x > 0 , 0 < s < 1



139 (a) Let a > 0. Evaluate the integral

J(a) =

ˆ a
0

log (1 + tana tan x) dx



(b) Evaluate the limit lim
a→0

J(a)

a3
.

140 Let max{, ·, } denote the max function. What can you
say about the integrals?

J1 =

ˆ 1

0

ˆ 1

0

x− y

max{x3,y3}
d(x,y)

�is inequality is be�er known as Gautchi’s Inequality.
You might as well evaluate the integral �rst by making the substitution

y = a− x.
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J2 =

ˆ 1

0

ˆ 1

0

x− y

max{x3,y3}
d(y, x)

What does this exercise teach you? 

141 Let 〈·, ·〉 denote the usual inner product of Rm.
Evaluate the integral

M =

ˆ

Rm

exp
(
−(〈x, S−1x〉)a

)
dx

where S is a positive symmetricm×m matrix and
a > 0.

142 Prove that for an entire function f holding

lim
z→∞ f(z)z = 0 then f is constant.

143 Let f : C→ C be an analytic and 1 − 1 function and let
D be the open unit disk. Prove that

¨

D

∣∣f ′(z)∣∣ dz = area(f (D))



144 Let n ∈ N and f be an entire function. Prove that for
any arbitrary positive numbers a,b it holds that

´ 2π

0
e−intf

(
z+ aeit

)
dt´ 2π

0
e−intf (z+ beit) dt

=
(a
b

)n

145 Let a,b ∈ C such that |b| < 1. Prove that

1

2π

˛

|z|=1

∣∣∣∣z− az− b

∣∣∣∣2 |dz| =
|a− b|2

1 − |b|
+ 1

146 De�ne

f(z) =
1

z
· 1 − 2z

z− 2
· · · 1 − 10z

z− 10

Evaluate the contour integral
‰

|z|=100

f(z) dz.

Does symmetry help you to evaluate the integral? Where is the �aw in
this method? Give a brief explanation.

�is is known as Lusin Area Integral Formula.

147 Prove that there does not exist a sequence {pn(z)}n∈N
of complex polynomials such that pn(z)→ 1

z

uniformly on CR = {z ∈ C | |z| = R}.

148 Let f be a meromorphic function on a (connected)
Riemann Surface X. Show that the zeros and the poles
of f are isolated points.

149 Let us prove that 0 = 1. We begin by stating Picard’s
Li�le �eorem:

�eorem

If a function f : C → C is entire and non-
constant, then the set of values that f(z) assumes
is either the whole complex plane or the plane mi-
nus a single point.

Let us now consider g(z) = ez which is de�nitely
complex di�erentiable. Since the composition of
complex di�erentiable functions is also complex
di�erentiable then the function

f(z) = g (g(x)) = ee
z

is also complex di�erentiable. Also, f is not constant;
that is for sure. Since there exists no z such that ez = 0
then 0 and 1 are not in the range of f. However, this is
an obscurity unless 0 = 1.

Find the �aw in the above argument. 

150 Let ψ(n) denote the n - th polygamma function and let
n ∈ N ∪ {0}. Prove that

ψ(n)(z)

ψ(n+1)(z)
>
ψ(n+1)(z)

ψ(n+2)(z)
, z > 0



151 Consider the points O(0, 0) and A(1, 0). Let Γ(x,y) be
a point of the plane such that y > 0. Set ϕ(x,y) to be
the angle that is de�ned by OΓ and AΓ . ( the one that is
less than π.) Prove that the function ϕ(x,y) is
harmonic.

�e �aw is not in the theorem!
Actually the above inequality is a consequence of a stronger one namely

this:
ψ(m)(z)ψ(n)(z) > ψ(m+n

2 )(z)

whenever m+n
2
∈ N. �e proof of it may be found at Joy of Mathematics.
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152 Let f be analytic in the unit disk D. Suppose that
Re(f(z)) > 0 forall z ∈ D and that f(0) = 1. Prove that

1 − |z|

1 + |z|
6 Re (f(z)) 6 |f(z)| 6

1 + |z|

1 − |z|

153 Let f(z) ∈ Q[z] be irreducible with degree n > 1. If f
has a root on the unit circle then n is even and

znf

(
1

z

)
= f(z)

154 Find all smooth functions g with domain R2 \ {(0, 0)}

such that

∇g =

(
−

y

x2 + y2
,

x

x2 + y2

)


155 Let f : Rn → R be a smooth function. Prove that there
exist functions gi, i = 1, . . . ,n such that

f (x1, x2, . . . , xn) − f (0, 0, . . . , 0) =

n∑
i=1

xigi (x1, x2, . . . , xn)

156 Given the curve γ(t) = e−t (cos t, sin t) , t > 0

(a) Sketch its graph.
(b) Evaluate the length of the curve as well as the

following line integrals

(i)
‰

γ

(x2 + y2) ds (ii)
‰

γ

(−y, x) · d(x,y)

(�estion from a Real Analysis Exam

University of Ioannina , Greece)

157 (a) Let D ⊂ R2 be the unit disk and ∂D be its positive
oriented boundary. Evaluate the following line
integral

‰

∂D

(
x− y3, x3 − y2

)
· d(x,y)

Such functions do not exist. Reason being that if we consider C(R) to be

a circle of centre 0 and radius R then 0 =

˛

C(R)

∇gdr > 0 which is obsiously

an obscurity.

(b) Can you deduce if the function

f̄(x,y) =
(
x− y3, x3 − y2

)
is a vector �eld by basing your reasoning solely
on question (a) ?

(�estion from a Real Analysis Exam

University of Ioannina , Greece)

158 (a) Let f ∈ C2 (R) such that div grad(f) = 0 and
D ⊆ R2 be a C1 normal set. Prove that

˛

∂D

(
∂f

∂y
,−
∂f

∂x

)
· d(x,y) = 0

(b) Examine if

f̄(x,y) = (2x cosy,−x2 siny)

is a conservative �eld and if so, �nd a scalar
potential.

(�estion from a Real Analysis Exam

University of Ioannina , Greece)

159 Prove that for every c > 0 the set

Bf,g = {(x,y, z) ∈ R3 : (x−f(z))2+(y−g(z))2 6 c , z ∈ [a,b]}

has the same volume for every function
f,g : [a,b]→ R.

160 Consider the subset of R3

B = {(x,y, z) ∈ R3 : x2 + y2 6 z 6 a}, a > 0

(a) Evaluate
(i) the volume of B.
(ii) the triple integral

T =

˚

B

(x2 + y2)z d(x,y, z)

(iii) the area of the boundary of B.
(iv) the surface integral

S =

˛

∂B

√
1 + 4z2 dσ

17
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(b) Express the volume of B through a suitable
continuously di�erentiable G : R3 → R3 and
through a suitable surface integral.

161 Prove that the work

W = −

˛

γ

(x,y, z)

(x2 + y2 + z2)3/2
· d(x,y, z)

produced along a C1 oriented curve γ of R3 \ {(0, 0, 0)}
depends only on the distances of starting and ending
point of γ about the origin.

162 Let Vn(R) be the volume of the ball of center 0 and
radius R > 0 in Rn. Prove that for n > 3 it holds that

Vn(1) =
2π

n
Vn−2(1)

163 Let S denote the area bounded by the curves x2y = 1

and x2y = 2 as well as the lines y = x and y = 2x and
let γ denote its negative oriented boundary. Evaluate

J =

˛

γ

(
e−x

2
− 6y

)
dx+

(
4x− 7y7

)
dy

164 Let u : R2 → R be a continously di�erentiable function
and let Cr be the circle of origin (0, 0) and radius r > 0.
Prove that:

1

2π
lim
r→0

1

r

˛

Cr

u ds = u(0, 0)

165 Let f (x) = x>Qx where x> = (x1, . . . , xn) ∈ Rn and
Q is the diagonal matrix

Q =


q1 0 . . . 0
0 q2 . . . 0
...

... . . . ...
0 0 . . . qn

 qi ∈ R, i = 1, . . . ,n

(a) Give the derivative as well as the Hessian matrix
of f.

(b) Give conditions for the qi such that f has a) a
local maximum b) a local minumum and c) neither
of the previous ones.

(c) Compute the Taylor polynomial of degree k of f
around x = 0 forall k ∈ N.

166 Let S = [0, 1]× [0, 1] ⊂ R2. Evaluate the integral

J =

¨

S

max{x,y}d(x,y)

Hint: It holds that

max{x,y} =

{
x , 0 6 y 6 x 6 1
y , 0 6 x 6 y 6 1

Hence

ˆ 1

0

ˆ 1

0
max{x,y}d(x,y) =

ˆ 1

0

ˆ x
0
xd(y, x)+

+

ˆ 1

0

ˆ y
0
y d(x,y)

= 2

ˆ 1

0

ˆ x
0
xd(y, x)

= 2

ˆ 1

0
x2 dx

=
2

3



167 LetM be the interesection of the elliptic cylinder
x2

a2
+
y2

b2
6 1 and of the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
6 1 a > 0, b > 0, c > 0

For all n ∈ N evaluate the integrals

In =

˚

M

(
a2b2 − b2x2 − a2y2

)n− 1
2 d(x,y, z)

(�estion from a Real Analysis Exam

University of Ioannina, Greece)

168 Let C = [0, 1]× [0, 1]× · · · × [0, 1] ⊆ Rn be the unit
cube. De�ne the function

An interpretation of this integral; if you have two independent uniform
(0, 1) random variables, the expected value of the maximum is 2

3
. (And the

expected value of theminimum is 1
3
. ) More generally: if you haven indepen-

dent uniform (0, 1) random variables, the expected value of the maximum
is n
n+1

. In more detail: if you order these random variables a�er the fact so
that Y1 6 Y2 6 · · · 6 Yn, then the expected value of Yk is k

n+1
. (�e general

name for this sort of reasoning is order statistics.)

Typese�ing LATEX Page 18 of 32 Editor: Tolaso J. Kos



General Topology

f (x1, x2, . . . , xn) =
x1x2 · · · xn

xa1
1 + xa2

2 + · · ·+ xann

where ai arbitrary positive constants. For which values
of ai > 0 is the value of the integral

´
C
f �nite?

169 Let f : R→ R be a function such that f(x) > 0 and´ ∞
−∞ f(t) dt = 1. For r > 0 we de�ne

In(r) =

ˆ
· · ·
ˆ

x21+x
2
2+···+x2n6r

f(x1)f(x2) · · · f(xn) d(x1, x2, . . . , xn)

Evaluate lim In(r).

170 Let D = {z ∈ C | |z| < 1}. Let A denote the area
measure on D normalised so that A (D) = π. Verify or
disprove that

¨

D

∣∣∣∣log

(
e

1 − z

)∣∣∣∣2 dA =
π3

6

171 For a given function f : R3 → R3 the
´
R3

|f(x)| dx exists.

If for every plane P of R3 it holds that
´
P

f(x) ds = 0

then prove that f is the zero function. 

172 Let A ⊆ Rn. If A is Jordan measurable and has zero
measure prove that

ˆ

A

1 dx̄ = 0

173 Find a countable and dense subset of R \Q with respect
to the usual topology.

174 Let X = [0,+∞) ∪ {+∞}. We endow it with the metric

ρ(x,y) = | arctan x− arctany|

Prove that under this metric X is separable , complete
and compact.

As a hint you may use Fourier transform.

175 Does there exist an enumeration {qn ∈ Q : n ∈ N} of Q
such that

R 6=
∞⋃
n=1

(
qn −

1

n
,qn +

1

n

)

176 Prove that there does not exist an 1 − 1 and continuous
mapping from R2 to R.

177 LetΩ be a metric space. Suppose that every bounded
subset ofΩ has at least one accumulation point. Prove
thatΩ is a complete metric space.

178 (a) Let (X, ρ) be a compact metric space and let
f : X→ X be an isometry. Prove that f is onto.

(b) Prove that the `2 space (that is the space of the
sequences for which

∞∑
n=1

x2n converges) is not

compact endowed by the metric

ρ(xn,yn) =

√√√√ ∞∑
n=1

(xn − yn)2

179 Prove that there exists no continuous and 1 − 1 map (
depiction ) from a sphere to a proper subset of it.

180 Is the set S = R2 \Q×Q complete? Give a brief
explanation.

181 Let R+ = {x ∈ R : x > 0}. Endow it with the metric

d(x,y) =

∣∣∣∣1x −
1

y

∣∣∣∣
(a) Show that the sequence an = n is a Cauchy one.
(b) Is the sequence 1

n a Cauchy one?
(c) Show that any sequence an in R+ converges in

R+ in the metric d above if and only if it
converges in R in the standard metric |x− y| and
that the limits in the two cases are equal.

182 Let us de�ne the following function:

f(x) =

{
x , 0 6 x < 1
1 , x > 1

as well as dm(x,y) = f(|x− y|).

19
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(a) Show that dm is a metric on R. You may call it the
mole metric. If points are close (closer than one
meter), their distance is the usual one, but are they
far apart (more than one meter) we do not
distinguish between their distances; they are just far
apart.

(b) Show that R endowed with the above metric is
complete and bounded but not compact. Is it
totally bounded? Why / Why not?

183 Prove that the set R2 \ {0, 0} is not simply connected. 

184 Find a sequence of open sets {Gn}n∈N of R such that

Z =

∞⋂
n=1

Gn



185 (a) Let θ ∈ R \Q. Prove that the set

D (θ) =
{
(cos 2nπθ, sin 2nπθ) ∈ R2 : n ∈ N

}
is a dense subset of the circle S1 : x2 + y2 = 1.

(b) Find a countable and dense subset of R \Q with
respect to the usual metric.

186 Let us denote S2 the unit sphere that is the set

S2 =
{
(x,y, z) ∈ R3

∣∣∣∣x2 + y2 + z2 = 1

}
If f : S2 → S2 is a continuous function such that
f(x) 6= f(−x) forall x ∈ S2 then prove that f is onto.

187 Examine if there exist non constant functions f : R→ R
that map any open interval onto a closed one.

188 Let (X,d) be a complete and a compact metric space.
Prove that there exists a unique number r = r(X,d)
with the property:

Well , the problem actually is not of an analysis nature but that of Alge-
braic Topology. Try to construct a deformation retraction from R2 \ {0, 0} to
S1 ( the unit circle ). For example take f(x) = x

‖x‖
. �en the fundamental

groups are isomorphic , however π1(S1) ∼= Z and hence the fundamental
group is not trivial. �erefore , the set is not simply connected.

Simply take

Gn =
⋃
m∈Z

(
m−

1

n
,m+

1

n

)

For all n ∈ N and for all xi, i = 1, 2, . . . ,n there
exists z ∈ X such that

1

n

n∑
i=1

d(z, xi) = r

189 Prove that a metric space (X,d) containing in�nite
points, where d is the discrete metric, is not compact.

190 Prove that the set

A =
{
(x,y) ∈ R2 | y cos x+ x siny = 1

}
is not path-connected with respect to the relative
topology of R2.

191 Find ( or construct ) a continuous function from the
positive rationals that is onto the real numbers.

192 Prove that double inequality

max
16j6p

√√√√ q∑
i=1

a2ij 6

∥∥∥∥∥∥∥
a11 · · · a1p

... . . . ...
aq1 · · · aqp


∥∥∥∥∥∥∥
2

6

√√√√ q∑
i=1

p∑
j=1

a2ij

Typese�ing LATEX Page 20 of 32 Editor: Tolaso J. Kos



Integrals and Series

193 Evaluate

J = −

ˆ ∞
1

∞∑
n=0

dx

(n+ x)3

194 Let a > −1. Evaluate

J =

ˆ π/2
0

log
(
1 + a sin2 x

)
dx

195 Let n ∈ N | n > 2. Prove that

ˆ ∞
0

log
(
1
x

)
(1 + x)n

dx =
1

n− 1

n−2∑
k=1

1

k

196 Evaluate the integral

J =

ˆ
1

0

arctan
x

x+ 1

arctan
1 + 2x− 2x2

2

dx

(Russian Mathematical Olympiad)

197 For any positive integer n , let 〈n〉 denote the closest
integer to

√
n. Evaluate the sum

S =

∞∑
n=1

2〈n〉 + 2−〈n〉

2n

(Putnam 2001)

198 Prove that

ˆ 1

0

∞∏
n=1

(1 − xn) dx =
4π
√

3 sinh π
√
23

3√
23 cosh π

√
23

2

199 Evaluate the integral

J =

ˆ 1

0

arctan
√

2 + x2

(1 + x2)
√

2 + x2
dx



�is integral is known with the name ”Ahmed’s integral” .

200 Let a ∈ R. Evaluate the integral

J =

ˆ ∞
−∞

cosax

ex + e−x
dx



201 Evaluate the integral

J =

ˆ ∞
0

x2 − 4

x2 + 4

sin 2x

x
dx

202 Evaluate the double series

S =

∞∑
k=1

(−1)k−1

k

∞∑
n=0

1

k2n + 1

(Putnam 2016)

203 Evaluate the integral

J =

ˆ 1

0

(
1

1 − x
+

1

ln x

)
dx



204 Let ψ(1) denote the trigamma function. Evaluate the
sum

S =

∞∑
n=1

(−1)n−1
(
ψ(1)(n)

)2
(Cornel Ioan Valean)

205 Let Li2 denote the dilogarithm function and Γ denote
the Gamma function. Prove that

ˆ 1

0

(
Li2
(
e−2πix

)
+ Li2

(
e2πix

))
log Γ(x) dx =

ζ(3)

2

where ζ is the Riemann zeta function.
�e evaluation of this integral allows to tell that

Re

[
ψ(0)

(
3

4
−
ia

4

)
−ψ(0)

(
1

4
−
ia

4

)]
= πsech

(πa
2

)
where ψ(0) is the digamma function.

One can also evaluate the general formˆ 1

0

(
1

1− x
+

1

ln x

)m
dx m > 1

21
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206 Let Li2 denote the dilogarithm function. Prove that

ˆ ∞
0

Li2
(
e−πx

)
arctan xdx =

π2

18
−

3ζ(3)

8

207 Prove that

∞∑
n=1

arctan

(
10n

(3n2 + 2) (9n2 − 1)

)
= ln 3 −

π

4

208 Let ζ denote the Riemann zeta function. Prove that

∞∑
k=1

kζ(2k)

4k−1
=
π2

4

209 Let Li3 denote the trilogarithm function. Prove that

∞∑
n=1

Li3
(
e−2nπ

)
=

7π3

360
−
ζ(3)

2

(Seraphim Tsipelis)

210 Prove that

ˆ 2−
√
3

0

arctan t

t
dt =

π

12
log
(

2 −
√

3
)
+

2G

3

where G denotes the Catalan constant.

211 Prove that

∞∑
n=1

ζ(2n+ 1)

(n+ 1)(2n+ 1)
= 1 − γ

where γ stands for the Euler - Mascheroni constant.

(Seraphim Tsipelis, Kotronis Anastasios)

212 Evaluate the following double series

S =

∞∑
m=1

∞∑
n=1

(−1)m+nm ln(m+ n)

(m+ n)3

(Enkel Hysnelaj)

213 Let Hn denote the n-th harmonic number. Prove that

∞∑
n=1

Hn

n

(
ζ(2) −

n∑
k=1

1

k2

)
=

7ζ(4)

4

where ζ is the Riemann zeta function.

214 Let Hn denote the n-th harmonic number. Prove that

∞∑
n=1

Hn

n
cos
(nπ

3

)
= −

π2

36

215 Prove that

∞∑
j=2

j∏
k=1

2k

j+ k− 1
= π

216 �is series may be called as ”�e harmony of the

harmony” . Evaluate the series

∞∑
n=1

1

(n+ 2)2n+2

n∑
k=1

1

k+ 1

k∑
m=1

1

m
=

ln3 2

6

217 Let Z 3 k > 1. Prove that

ˆ 1

0
lnk(1−x) ln xdx = (−1)k+1k!

(
k+ 1 −

k+1∑
m=2

ζ(k)

)

where ζ denotes the Riemann zeta function.

(Ovidiu Furdui)

218 Evaluate the series

S =

∞∑
n=1

cos nπ3
9 − 4n2

219 Let r ∈ R. Prove that

∞∑
n=−∞ arctan

(
sinh r

coshn

)
= πr



�e more general identity
∞∏

n=−∞
(
1+

sin r

coshn

)
= eπr−r

2

for Re(r) = 0 seems to be true as pointed out by Tintarn at AoPS.com.
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(H. Ohtsuka)

220 Evaluate

ˆ ∞
−∞

arctan x

x2 + x+ 1
dx

221 Let Γ denote the Gamma function. Evaluate the integral

ˆ 1

0

(
log Γ(x) + log Γ(1 − x)

)
log Γ(x) dx

222 Evaluate the integrals

(i)
ˆ ∞
0

ln x

ex + 1
dx (ii)

ˆ ∞
0

ln x

ex − 1
dx

223 Let erf denote the error function. Prove that

ˆ ∞
0
e−xerf2(x) dx =

2
√

2

π
arctan

1√
2

224 Evaluate

ˆ ∞
0

(
x

ex − e−x
−

1

2

)
dx

x2

225 Prove that

ˆ 1

0

log(1 + x) log2 x

1 − x
dx =

7

2
log 2ζ(3) −

19

720
π4

(Cornel Ioan Valean)

226 Let Hn denote the n-th harmonic number. Evaluate the
sum

S =

∞∑
k=1

∞∑
n=1

(−1)k+n
H2
k+n

k+ n

(Cornel Ioan Valean)

227 Calculate

S =

∞∑
n=1

n∏
k=1

1 + k log k

2 + (k+ 1) log(k+ 1)

228 Calculate

S =

∞∑
n=1

arctan (sinhn) arctan

(
sinh 1

coshn

)

(H. Ohtsuka)

229 Let {·} denote the fractional part. Evaluate

J =

ˆ π/2
0

{tan x}

tan x
dx

230 Calculate

J =

ˆ π/2
0

x ln tan xdx

231 Let γ denote the Euler - Mascheroni constant. Prove
that

ˆ ∞
0

cos x2 − cos x

x
dx =

γ

2

232 Calculate

ˆ ∞
0

log x

(2x+ 1) (x2 + x+ 1)
dx

233 Let {·} denote the fractional part. Evaluate

ˆ 1

0

{
1

x

}2{ 1

1 − x

}
dx

234 LetΩ denote the root of the equation xex = 1. Prove
that

ˆ ∞
−∞

dx

(ex − x)2 + π2
=

1

1 +Ω

235 Evaluate the series

S =

∞∑
n=−∞

x2

n2 + n− 1

as well as the product

Π =

∞∏
n=1

(
1 +

x2

n2 + n− 1

)
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236 Let ζ denote the Riemann zeta function. Prove the
identity:

1

2π
Li2
(
e−2π

)
= log(2π) − 1 −

5π

12
−

∞∑
n=1

(−1)nζ(2n)

n(2n+ 1)

where Li2 denotes the dilogarithm function.

237 Let G denote the Catalan’s constant. Prove that

π

2

∞∑
n=0

ζ(2n)

(2n+ 1)4n
= G

where ζ denotes the Riemann zeta function and
ζ(0) = −1

2 .

238 Let s ∈ C such that Re(s) > 1. Evaluate the following
double Euler sum

S =
∑

(j,k)∈Z2\{(0,0)}

1

(j2 + k2)s

239 Evaluate the integral

J =

ˆ π/2
0

sin2 x log
(
sin2(tan x)

)
dx

240 Let 0 6 α,β 6 π and κ > 0. Prove that

ˆ ∞
0

1

x
log

(
x2 + 2κx cosβ+ κ2

x2 + 2κx cosα+ κ2

)
dx = α2 − β2

241 Let γ denote the Euler – Mascheroni constant. De�ne

F(x) =
∞∑
n=1

x2
n . Prove that

γ = 1 −

ˆ 1

0

F(x)

1 + x
dx

242 Let Bn denote the n -th Bernoulli number. Prove that

∞∑
n=1

(−1)n−1B2nx
2n

2n (2n)!
= log

x

2
− log sin

x

2

243 Evaluate the integral

J =

ˆ 1

0

1 − x

log x

∞∑
n=0

x2
n

dx

244 Prove that

∞∑
n=1

cothnπ

n7
=

19π7

56700

245 Evaluate the sum

S =

∞∑
n=−∞

log
∣∣n+ 1

4

∣∣
n+ 1

4

(Seraphim Tsipelis)

246 Let Hn denote the n-th harmonic sum. Evaluate the
sum:

S =

∞∑
n=1

(
Hn − logn− γ−

1

2n
+

1

12n2

)

(M. Omarjee)

247 Prove that

∞∏
n=0

(
n∏
k=0

(k+ 1)(−1)k+1(nk)

)n(n+1)

2n+3

= e7ζ(3)/24ζ(2)

where ζ denotes the Riemann zeta function.

248 Let R 3 s > 2. Evaluate the ( double ) sum:

S =
∑

(m,n)∈Z2\{(0,0)}

m2 + 4mn+ n2

(m2 +mn+ n2)s

(Kent Merry�eld)

249 Let a ∈ [−π,π] and let us denote with Ci the Cosine
integral function. Evaluate the series

S =

∞∑
n=1

(−1)n−1Ci(na)

n2



�e most straight forward approach is to use Fourier series beginning
by equation (2) at the link. �e �nal answer is

S =
γπ2

12
+
π2 lna

12
−
π2 ln 2

12
−
ζ ′(2)

2
−
a2

8

where γ denotes the Euler - Mascheroni constant.
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250 Let α , β ∈ R such that 0 < α < β. Prove that

ˆ ∞
0

log x

(x+ α)(x+ β)
dx =

1

2(β− α)

[
log2 β− log2 α

]
(Grigorios Kostakos)



251 Let γ denote the Euler - Mascheroni constant. Prove
that

ˆ ∞
0

cos xn − cos x2n

x
log xdx =

12γ2 − π2

2(4n)2

252 Calculate

M =

ˆ ∞

0

ˆ ∞

0

· · ·

ˆ ∞

0

n∏
m=1

cos(xm)

n∑
m=1

xm

d(x1, x2, . . . , xn)

253 Let Hn denote the n -th harmonic number. Prove that
|z| < 1 it holds that

∞∑
k=1

(−1)k−1
H2k

2k+ 1
z2k+1 =

arctan z

2
log
(
1 + z2

)

254 Let Bn denote the n-th Bernoulli number. Prove that

∞∑
n=1

(−1)n−1B2nx
2n

2n (2n)!
= log

x

2
− log sin

x

2

255 Let G denote the Catalan’s constant andHn the n - th
harmonic number. Prove that

∞∑
n=1

(
H4n−3

4n− 3
−

H4n−2

4n− 2

)
=
π2

64
+
π log 2

32
+

G

2
−

−
3 log2 2

16
−

3π log 2

32
�e interested reader might as well give a try the following integral

J =

ˆ ∞
0

log2 x

(x+ α)(x+ β)
dx

(Cornel Ioan Valean)

256 Let A denote the Glashier - Kinkelin constant and γ the
Euler - Mascheroni constant. Prove that

∞∏
k=1

∞∏
n=1

∞∏
m=1

(k+ n+m)
(−1)k+m+n

k+m+n =

=
A3/2

π3/4e1/8−(7/12+γ) log 2+ 1
2 log2 2

(Cornel Ioan Valean)



257 Prove that

∞∑
n=1

1

n

(
1

n+ 1
−

1

n+ 2
+

1

n+ 3
− · · ·

)2

=

=
π2 ln 2

6
−

ln3 2

3
−

3

4
ζ(3)

(Ovidiu Furdui)

258 Let k be a positive integer. Evaluate the multiple sum

S =
∑

i1,...,ik>1

1

i1 · · · ik(i1 + · · ·+ ik)2

(Ovidiu Furdui)



259 Evaluate

ˆ ∞
0

ˆ ∞
0

d(x,y)

(ex + ey)2

(Ovidiu Furdui)

Currently I do not have a solution on this but the most straight forward
idea is to actually try to �nd the number of ways n can be wri�en as a sum
of three numbers and reduce the triple product into a single one.

For k = 1 the sum equals (k+ 1)!ζ(k+ 2)

2
whereas for k > 2 the sum

equals

k!

(
k+ 1

2
ζ(k+ 2) −

1

2

k−1∑
i=1

ζ(k+ 1− i)ζ(i+ 1)

)
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260 Evaluate the integral

ˆ ∞
0

ex − 1

ex + 1
lnk
(
ex + 1

ex − 1

)
dx

261 Let µ denote the Möbius function. Evaluate the series

S =

∞∑
n=1

(−1)µ(n)

ns

where Re(s) > 1.

262 Let n ∈ N and ζ denote the Riemann zeta function.
Prove that

ˆ π/2
0

(log sin x)n tan xdx = (−1)n
n! ζ(n+ 1)

2n+1

263 Let G denote the Catalan’s constant. Prove that

27

∞∑
n=0

16n

(2n+ 3)3 (2n+ 1)2
(
2n
n

)2 =

=
27

2

(
7ζ(3) + (3 − 2G)π− 12

)


264 Let Hn denote the n - th harmonic number. Prove that

∞∑
n=1

(−1)n+1HnHn+1

(n+ 1)2
=
π4

480

265 Express in terms of dilogarithm the series

S =

∞∑
n=1

(n arccotn− 1)

266 Let lcm denote the least common multiple. Prove that
for all s > 1 it holds that

∞∑
n=1

∞∑
m=1

1

lcms(m,n)
=
ζ3(s)

ζ(2s)

where ζ is the Riemann zeta function.
�e above series was proved by Jacopo D’ Aurizio , an MSE user. �e

series goes deeper and is actually a closed form of the hypergeometric func-
tion

4F3

(
1, 1, 1,

3

2
;
5

2
,
5

2
,
5

2
; 1

)

267 �e n -th Fibonacci number is de�ned as F0 = 0 ,
F1 = 1 and recursively via the relation

Fn+2 = Fn+1 + Fn for all n > 0

Prove that

∞∑
n=0

arctan

(
(−1)n

Fn+1 (Fn + Fn+2)

)
= arctan

(√
5 − 2

)

268 Let ζ denote the Riemann zeta function and let
N 3 s > 2. Prove that

ˆ 1

0
arctanhs(x) dx =

2ζ(s) (2s − 2) Γ(s+ 1)

4s

269 Evaluate the product

Π =

∞∏
n=1

(
1 +

1

4n

)2( 2n+ 1

2n+ 1 + (−1)n−1

)(−1)n−1

270 Let Tn denote the n - th triangular number. Evaluate

∞∑
n=1

1

(8Tn − 3) (8Tn+1 − 3)

271 Let ψ(0) denote the digamma function and µ the
Möbius function. Prove that

∞∑
n=1

µ(n)

n
ψ(0)

(
1 +

1

n

)
=

1

2

272 Let µ denote the Möbius function. Prove that

∞∑
n=1

µ(n) logn

n
= −1

273 Let gd denote the Gudermannian function. Evaluate the
integral:

J =

¨

[0,1]2

gd(log xy)

1 − xy
d(x,y)
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274 Let Fn denote the n -th Fibonacci number and letH(2)
n

denote the n -th harmonic number of weight 2.
Evaluate the series

S =

∞∑
n=1

FnH
(2)
n−1

n2
(
2n
n

)
275 Let ψ(1) denote the trigamma function. Prove that

∞∑
n=1

ψ(1)(n)xn =
x

1 − x
(ζ(2) − Li2(x))

In continuity , investigate for which x ∈ R does the
series converge .

276 Let ψ(1) denote the trigamma function. Prove that

∞∑
n=1

ψ(1)(n)ψ(1)(n+ 1)

n2
=
π6

840
=

9ζ(6)

8

( Seraphim Tsipelis )

277 Let Li2 denote the dilogarithm function. Evaluate the
double integral

J =

ˆ 1

0

ˆ 1

0

log x log y

(1 − x)(1 − y)

Li2(xy)

xy
d(x,y)

278 Evaluate the series

Ω =

∞∑
n=1

arctan

(
9

9 + (3n+ 5)(3n+ 8)

)

( Dan Sitaru )

279 Let γ denote the Euler - Mascheroni constant and {·} the
fractional function. Prove that

ˆ 1

0
{x} ·
{

1

1 − x

}
dx =

π2

12
− γ

280 Let {·} denote the fractional function. Prove that

ˆ ∞
1

{x}

x5
dx =

1

3
−
π4

360

281 Let a ∈ R.Evaluate the integral

J =

ˆ ∞
0

sin2 ax

x(1 − ex)
dx

282 Let ζ denote the zeta Riemann function and Li2 denote
the dilogarithm function. Evaluate the integral

ˆ 1

0

[
log x log(1−x)+Li2(x)

](
Li2(x)

x(1 − x)
−
ζ(2)

1 − x

)
dx



283 Let Hn denote the n-th harmonic number. Prove that

∞∑
n=1

H2
n

n(n+ 1)
= 3ζ(3)

284 Let ζ denote the Riemann zeta function. De�ne

ζ∗(n) =

{
ζ(n) , n > 1
γ , n = 1

where γ is the Euler - Mascheroni constant. Evalate the
series

S =

∞∑
n=1

(ζ∗(n) − 1) cos
(
nπ
3

)
n

285 Let n,m ∈ N. De�ne:

S
(m)
n =

n∑
k=0

km
(
n

k

)−1

(a) Prove that S(1)n =
n

2
S
(0)
n .

(b) Use (a) to deduce that

S
(0)
n+1 =

n+ 2

2(n+ 1)
S
(0)
n + 1

(c) Prove that

n∑
k=0

(
n

k

)−1

=
n+ 1

2n+1

n+1∑
k=1

2k

k

�e result is 4ζ(2)ζ(3) − 9ζ(5).
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286 Let Li4 denote the polylogarithm of order 4. Evaluate
the integral

J =

ˆ 1

0

log x log(1 − x)Li4(x)

1 − x
dx

287 Evaluate

J =

ˆ ∞
0

ln2

(
x

x2 + 1

)
1

(x2 + 1)2
dx

288 Evaluate the sum

∞∑
n=1

4n(
2n
n

)
(4n2 − 1)

289 Let Ln denote the n -th Lucas number, de�ned by
L0 = 2 , L1 = 1 and for all n > 2

Ln = Ln−1 + Ln−2

Compute the series

S =

∞∑
n=1

arctan

(
L2n+1

1 + LnL2n+1Ln+2

)

290 Compute the multiple integral

ˆ
· · ·
ˆ

[0,1]n

∑n
k=1 log (1 − xk)

∏n
k=1 log(1 − xk)

(
∑n
k=1 xk)

∏n
k=1 xk

d (x1, . . . , xn)

291 Let Hn denote the n-th harmonic number. Prove that

S =

∞∑
k=1

∞∑
n=1

Hn

kn(k+ n)3
=

215

48
ζ(6) − 3ζ2(3)

292 Evaluate the integral

J =

ˆ ∞
0

sin2 ax

x(1 − ex)
dx

In fact something more general holds
n∑
k=0

anbn−k
(
n

k

)−1

=
n+ 1

(a+ b)
(
1
a
+ 1
b

)n+1

n+1∑
k=1

(
ak + bk

) (
1
a
+ 1
b

)k
k

and is a consequence of a theorem named by Mansour who proved it.

293 Prove that

ˆ ∞
−∞ sin

(
x2 +

1

x2

)
dx =

√
π

2
(sin 2 + cos 2)

294 Let gcd(·, ·) denote the greatest common divisor.
Evaluate the sum

S =

∞∑
n=1

gcd(n, 2016)

n2

295 Prove that

∞∑
n=1

(
n∏
k=1

cos
kπ

n

)
= −

4

5

296 Prove that

ˆ 1

0

ˆ 1

0

ˆ 1

0

d(x,y, z)

ln x+ lny+ ln z
= −

1

2

297 Evaluate the double integral

J =

ˆ ∞
0

ˆ ∞
0
e−

x2+y2

2 sin(xy) dx dy

298 Prove that
ˆ π/2
0

x log (1 − sin x)

sin x
dx = −

π3

8
.

299 Prove that

ˆ ∞
0

(
1

sinh x
−

1

x

)
x

x2 + 4π2s2
dx =

1

2

[
ψ

(
s+

1

2

)
−ψ(s+ 1)

]
where ψ denotes the digamma function.

300 Let S denote the Sophomore’s constant, namely

S =

ˆ 1

0
tt dt =

∞∑
n=1

(−1)n−1n−n ≈ 0.7834305107

Prove that
¨

[0,1]2

(xy)xy d(x,y) = S.



An interesting question is the following integral

J =

˚

[0,1]3

(xyz)
xyz d(x,y, z)
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Open Problems

In this section we shall present some open problems.

1. Canwe cover a unit square with 1
k ·

1
k+1 rectangles? Here

k ∈ N.

2. Is the sequence
(
3
2

)n
mod 1 dense in the unit interval?

3. Is it true that

∞∑
n=0

1 + 14n+ 76n2 + 168n3

220n

(
2n

n

)7

=
32

π3



4. (�e following is called Giuga Conjecture or Agoh-Giuga
Conjecture and its origins can be traced back in 1950.) A
positive integer p > 1 is prime if and only if

p−1∑
i=1

ip−1 ≡ −1 (mod p)

5. Why is it so di�cult to prove that e+ π is irrational?

6. Let
(
n
7

)
denote the Legendre symbol. Is it true that

24

7
√

7

ˆ π/2
π/3

log

∣∣∣∣tan t+
√

7

tan t−
√

7

∣∣∣∣ dt = ∞∑
n=1

(n
7

) 1

n2

7. Is the Catalan’s constant de�ned as

G =

∞∑
n=0

(−1)n

(2n+ 1)2

irrational?

8. Let Hn denote the n - th Harmonic number. Is it true
that for all n > 1 it holds that

∑
d|n

d 6 Hn + (logHn)e
Hn



�is kind of identity is amenable in principle to automatic theorem-
proving methods, but (using known techniques) is out of reach of current
computers. Another such formula is the Cullen’s Pi Formula that can be
found here.

Actually Je� Lagarias showed that this is equivalent to the Riemann hy-
pothesis!

9. Let x0 = 2. Is it true that the sequence {xn}n∈N de�ned
as

xn+1 = xn −
1

xn

is unbounded?

10. Does the series

S =

∞∑
n=1

1

n3 sin2 n

converge?

11. Is it true that

lim
n→+∞ 1

n2 sinn
= 0



12. Let pn denote the n -th prime. Is the series

S =

∞∑
n=1

(−1)n−1n

pn

convergent? 

13. Is there a dense subset of a plane having only rational
distances between its points?

14. For every odd prime is it true that one has

0! + 1! + · · ·+ (p− 1)! 6≡ 0 (mod p)



15. (�e following is known as Li�lewood’s conjecture.) For
α , β ∈ R is it true that

lim inf
n→+∞(n · ||nα|| · ||nβ||) = 0

Here || · || denotes the distance to the nearest integer.

16. What is the largest possible volume of the convex hull of
a space curve having unit length?

We would expect this to tend to zero, but the proof is beyond what is
currently known. It is expected that the irrationality measure of π is 2 (it is
known that all but a zero-measure set of real numbers have irrationality mea-
sure 2). �erefore, it is expected that the sequence tends to 0 but currently
there is no proof for that.

�e origin of this problem traces back to Paul Erdős .
�is is known as Kurepa’s conjecture. A proof was claimed and pub-

lished in 2004 but the claim was withdrawn in 2011.
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Appendix

In this appendix we shall discuss the convergence of both the
sequence xn = sin (παn) and the series

∞∑
n=1

sin (παn).

We shall begin with an exercise that already lies in this booklet.
We are proving that the series

S =

∞∑
n=1

sin

(
π
(

2 +
√

3
)n)

converges.

Proof. Due to the binomial expansion we have that

(
2 +
√

3
)n

+
(

2 −
√

3
)n

= 2In

where In is an integer.

�us,

∣∣∣∣sin(π(2 +
√

3
)n)∣∣∣∣ = ∣∣∣∣sin(2πIn − π

(
2 −
√

3
)n)∣∣∣∣

=

∣∣∣∣sin(π(2 −
√

3
)n)∣∣∣∣

6 π
(

2 −
√

3
)n

�e last is a geometric progression with common ratio λ less
than 1. �us, the original series converges absolutely.

�

In fact , the series converges to some negative number greater
than − π

1+
√
3
. �e convergence of S is not exceptional. Some-

thing deeper is at play here.

Pisot–Vijayaraghavan number

Pisot–Vijayaraghavan number, also called simply a Pisot num-
ber or a PV number is a real algebraic integer greater than 1
all of whose Galois conjugates are less than 1 in absolute value.

�ese numbers were discovered by Axel �ue in 1912 and re-
discovered by G. H. Hardy in 1919 within the context of dio-
phantine approximation. �ey became widely known a�er the
publication of Charles Pisot’s dissertation in 1938. �ey also
occur in the uniqueness problem for Fourier series. Tirukkan-
napuram Vijayaraghavan and Raphael Salem continued their
study in the 1940s. Salem numbers are a closely related set of
numbers.

A characteristic property of PV numbers is that their powers
approach integers at an exponential rate. Pisot proved a re-
markable converse: if α > 1 is a real number such that the
sequence ‖α‖n measuring the distance from its consecutive
powers to the nearest integer is square-summable, or `2, then
α is a Pisot number.

De�nition

An algebraic integer of degree n is a root α of an irre-
ducible monic polynomial P of degree n with integer
coe�cients, its minimal polynomial. �e other roots
of P are called the conjugates of α. If α > 1 but all
other roots of P are real or complex numbers of abso-
lute value less than 1, so that they lie strictly inside the
circle |z| = 1 in the complex plane, then α is called
a Pisot number, Pisot–Vijayaraghavan number or
simply PV number.

For instance the golden ratioϕ is a real quadratic integer that is
greater than 1 while the absolute value of its conjugate −ϕ−1

is less than 1. �us, ϕ is a Pisot number and its minimal poly-
nomial is x2 − x− 1.

Elementary Properties

� Every integer greater than 1 is a PV number. Conversely,
every rational PV number is an integer greater than 1.

� If α is an irrational PV number whose minimal polyno-
mial ends in k then α is greater than |k|. Consequently,
all PV numbers that are less than 2 are algebraic units.

� If α is a PV number then so are its powers αk for all
natural number exponents k.

� Every real algebraic number �eldK of degree n contains
a PV number of degree n. �is number is a �eld genera-
tor. �e set of all PV numbers of degree n in K is closed
under multiplication.
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� Given an upper boundM and degree n, there are only
a �nite number of PV numbers of degree n that are less
thanM.

� Every PV number is a Perron number (a real algebraic
number greater than one all of whose conjugates have
smaller absolute value).

Diophantine properties

�e main interest in PV numbers is due to the fact that their
powers have a very ”biased” distribution (mod 1). If α is a PV
number and λ is any algebraic integer in the �eldQ(α) then the
sequence ‖λαn‖ where ‖·‖ denotes the distance from the real
number x to the nearest integer, approaches 0 at an exponential
rate. In particular, it is a square-summable sequence and its
terms converge to 0.

Two converse statements are known: they characterize PV num-
bers among all real numbers and among the algebraic numbers
(but under a weaker Diophantine assumption).

• Suppose α is a real number greater than 1 and λ is a non-
zero real number such that

∞∑
n=1
‖λαn‖2 converges. �en

α is a Pisot number and λ is an algebraic number in the
�eld Q (α) ( Pisot’s theorem ).

• Suppose α be an algebraic number greater than 1 and λ
is a non-zero real number such that ‖λαn‖ → 0. �en
α is a Pisot number and λ is an algebraic number in the
�eld Q (α)

Some more results

Pisot (1938) proved the fact that if θ is chosen such that there
exists a λ 6= 0 for which the series

∞∑
n=0

sin2 (πλθn) converges

then θ is an algebraic integer whose conjugates all (except for
itself) have modulus less than 1, and λ is an algebraic integer
of the �eld K (θ).

�e proof of this theorem is based on the lemma that for a Pisot
number θ, there always exists a number λ such that 1 6 λ < θ
and the following inequality is satis�ed:

∞∑
n=0

sin2 (πλθn) 6
π2 (2θ+ 1)2

(θ− 1)2

Back to the problem

It is known that for almost allα > 1 (i.e except a set of Lebesgue
measure 0), {αn}, the fractional part ofαn is an equidistributed
sequence. A consequence of this is for almost all α > 1, the
sequence sin(παn) does not converge to 0 and hence the series∞∑
n=1

sin(παn) diverges.

�ere are known exceptions to this. In particular, it is known
that {αn} is not equidistributed mod 1 if α is a PV number;
i.e. an algebraic integer α > 1 and all other roots of its mini-
mal polynomials lie strictly inside the unit circle. Since the PV
numbers have a very ”biased” distribution (mod 1) we conclude
that the series

S =

∞∑
n=1

sin(παn)

converges whenever α is a PV number. Because 2 +
√

3 is PV
number we conclude that the series converges.

Problem 1: Discuss the convergence of the series

S =

∞∑
n=1

sin

(
π
(

5 +
√

7
)n)

Problem 2: Discuss the convergence of the sequence

xn = sin

(
π
(

5 +
√

7
)n)
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